
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

INTERRUPTION CONTROLLED OPTIMAL
SORTING

Rathinasabapathy R

and Chandrasekaran S

Abstract— There are numerous algorithms have been developed to sort a given set of elements. Generally, sorting algorithms are having

a computational complexity of O(n
2
). During the process of sorting when there is an interrupt due to system failure, the algorithm abruptly

ends. Then the algorithm usually requires to be started again from the beginning. Given the quadratic complexity, when the sorting process

is interrupted, restarting from the beginning, will be time consuming. In this paper, a solution has been provided, by way of using an

algorithm, which will not start from the beginning, instead it will continue from where the sorting algorithm was interrupted by storing the

intermediate data in the secondary storage.

Index Terms— sorting, searching, complexity analysis, algorithm.

——————————  ——————————

1 INTRODUCTION

Sorting is one of the important issues in computer science
[1][2][3][4]. A lot of sorting algorithms has been devel-
oped to enhance the performance in terms of computa-

tional complexity [5], memory and related factors. Although
sorting problem is one of the basic issues, useful and efficient
sorting algorithms are still being developed [6]. Any sorting
process rearranges a set of elements, objects, numbers,
strings, attributes of a database, combinations of attributes of a
database, either in ascending or descending order. The selec-
tion sort, insertion sort, bubble sort are some of the fundamen-
tal algorithms, which are comparison-based. They have the
complexities in the order of O(n2). The other sort algorithms
in comparison-based category such as Quicksort, heap sort,
Merge sort, Shell Sort etc have their complexities in the order
of O(n log2n) [7][8]. The sorting algorithms have gained wide
applications and a lot of analyses [3] have been on the efficacy
of the algorithms. There are a set of algorithms, which modi-
fies, enhances, optimizes the existing algorithms and pro-
vides visualization on the working of sorting
[9][10][11][12][13]. Usually all algorithms are expected to exe-
cute from starting to end. When interrupted, mostly the pro-
cess starts its sorting operation once again from the first ele-
ment in the unsorted list. The time consumption will be com-
parably more, when its operation is perturbed in mid way. To
remedy this problem, a solution is provided in this paper, to
sort the elements from the point of interruption. The point of
interruption may occur anywhere in the algorithm. To imple-
ment the algorithm, it is required to identify where the sorting
has been interrupted and start the process from there. On an
experimental basis, the proposed technique is incorporated in
the popular selection sort algorithm.

2 SELECTION SORT

 The following is the selection sort algorithm to sort an
array of n numbers in ascending order.

1) Read a[i] //a[i] to be sorted in ascending order
2) For (i=0;i<n-1;i++)
3) For(j=i+1;j<n;j++)

4) {
5) If (a[i]>=a[j])
6) {
7) tmp=a[i];
8) a[i]=a[j];
9) a[j]=tmp;
10) }
11) }
12) }

 It is a well known sorting algorithm having a com-
plexity of O(n2). If the algorithm is interrupted in the middle,
to start the algorithm from the interrupted point, it becomes
necessary to split the process into various sub processes and
for each sub process, the starting point and ending point is to
be analyzed and identified. In this paper, a method has been
provided so that it can proceed from the interrupted point. For
this, the algorithm may be split into several stages. If the algo-
rithm is interrupted in the middle, for example let it be be-
tween ith stage and (i+1)th stage, the algorithm has been de-
signed in such a way that the status of ith stage is retrieved
from back store and the algorithm continue to start as if it has
completed ith stage. The intermediate results have be to stored
in a backup store. The algorithm has to be developed with
proper cognizance , so that, if at all there is an interruption ,
the status of the algorithm at that instant such as what are the
items need to be stored ? and from which position it needs to
be started again ? and what are all the data structures to be
kept in the backup store ?.
 When analyzing the selection sort, it can be found
that the elements are sorted from beginning to end by bring-
ing the smallest element to the top one after another for each
iteration. If it is done for n iterations, the sorting will be over.
The problem of sorting may be considered as bringing each
element to the top which is smallest of all the remaining ele-
ments and it is iterated. Bringing each element to the top in-
volves more smaller sub steps, which may be ignored because
it is contributing to the complexity which is less than O(n). In
short, the problem of O(n2) complexity is divided into problem
of n times the complexity of O(n). The problem is not further

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

divided.
 The selection sort algorithm can be rewritten delineat-
ing the each sub process involved.

1) For(i=0;i<n;i++)
2) {
3) Find smallest ith element in each pass
4) }

 Suppose the system is interrupted in the middle dur-
ing say i=k. That is, already up to i=k-1, the smallest elements
are found in the array a[i]. The algorithm is to be continued
from i=k even though it is doing the operations in the middle
of i=k. So, the intermediate results at the end of i=k-1, should
have been stored in the backup store, to continue it. That is,
the array of numbers is sorted up to i equal to k-1. So, the ar-
ray is split into two disjoint arrays as c[], a sorted array and d[
], a unsorted array. Array c[] will contain sorted k elements of
the given array, and array d[] will contain remaining elements
of the array. It is enough if we sort the array d[] and append it
with array c[].

3 PROPOSED ALGORITHM

 For splitting the array and to store it in backup store,
every time, an element is brought up to the top as smallest(for
ascending order) element. The element just found and the re-
maining elements are to be split into two arrays and to be
stored in a backup store. For the next iteration the file is to be
written afresh with two elements as sorted and the remaining
elements as unsorted. Proceeding this way, at any point of
time, the file will contain sorted array and unsorted array with
the information that the size of the array which has been sort-
ed. So, a structure can be created as below to store the ele-
ments to be backed up.

Struct arraydata
{
 int k; //upto which array is sorted
 int c[] //a sorted array
 int d[] //a unsorted array
}

From the above discussion, the given sorted array can be
viewed as in array data structure, having value k as zero, ar-
ray c[] as empty and array d[] as the whole unsorted array.
During the execution of the program the value of k, array c[]
and array d[] will go on changing and this structure has to be
kept in a file. If we proceed to store the data for each iteration
in a file, it will be time consuming. To alleviate this, the inter-
mediate data is stored after a specified time interval that could
be chosen by the user. It can further be modified to store in-
termediate data in two files in two different consecutive time
intervals. This will facilitate us to get to the intermediate data
even if one file is not accessible other file can be used to start
the sorting process at a point at which the algorithm is inter-
rupted. An algorithm is explained in the next section with the
incorporation of the methods explained above.

4 SPLITTING THE ARRAY
 The following is the algorithm to sort the given array
of data. In this algorithm, the objects used and their relevance
has been specified in Table 1.

 Table 1. Objects used and their relevance

 Algorithm1 : To sort a given array

1) Start = 0 // If started from beginning
2) If (Start == 0) { fmode = 0; Start = 1; }
3) Else // if started from interrupted state
4) {
5) fs = (file stream with latest time of crea-

tion(fs1,fs2));
6) If (fs == fs1) { fmode = 0; } Else { fmode = 1; }
7) }
8) Readfs(fs,obj)
9) Start_time = time();
10) szeofd = sizeof(d);
11) For(p=0; p<szeofd-1;p++)
12) {
13) For(q=p+1; q<sizeofd; q++)
14) {
15) If(obj.d [p]>obj.d[q])
16) {
17) tmp=obj.d[p];
18) Obj.d[p]=obj.d[q];
19) Obj.d[q]=tmp;
20) }
21) }//end of for(q = …)
22) End_time = time();
23) Time_Elapsed = (End_time – Start_time)
24) If (Elapsed_Time() >= Tolarable_time)
25) { //append array c[] with array d[0..p]
26) fmode = (fmode+1) mod 2;
27) If (fmode == 0)
28) { Writefs(fs1,obj); }
29) Else { Writefs(fs2,obj); }
30) Start_time=time();
31) }
32) }//end of for(p = …)

In the initial stage, the algorithm starts with one file with the
given data. As, the program is being processed, after an

Obj An instance of the struc-
ture array data

Obj.k The index upto which the
data is already sorted

Obj.c[] An array of sorted data

Obj.d[] An array of unsorted data

fs,fs1,fs2 File stream for a text data
file

Readfs A function to read obj from
a file stream fs

Writefs A function to write obj into
a file stream fs

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

elapsed time, a file with file stream fs2 is created. Then, again
after an elapsed time the state of the system is stored in fs1.
Alternatively, the files with streams fs1 and fs2 are created. If
interruption occurs, the algorithm again started by taking the
information in the file with latest time of creation. If by
chance, it is not able to be used, then the previous state of the
system is taken from the other file.
 Instead of using the time-sliced approach as discussed
earlier, an alternate algorithm has been proposed by setting
the number of iterations to be executed before storing the in-
termediate sorted data. After completion of the preset number
of iterations, the intermediate results are stored and the algo-
rithm can continue execution from the point it was preset(that
is from next iteration onwards) up to end of data.

 The following algorithm assumes a file having the
structure as below.

 Struct arraydata
 {
 string strng;
 string nm[]; // array of numbers
 }
 Each line of the file stores one value of the variables,

strng or the array nm[i]. The variable “strng” stores the value
which specifies the record number upto which the array of
numbers are sorted. In this algorithm two files with the above
structures are used. Initially, a file with file pointer [fp1] is
storing the data with value -1 for the variable “strng” which
specifies that the file is yet to be sorted. Once the algorithm
started execution, after certain specified number of iterations,
a file with file pointer [fp2] is stored with the number of rec-
ords sorted in the variable “strng” and the intermediate data is
written into the file. The two files are updated in this method
with recent intermediate sorted data in an interleaved manner.
If the algorithm abruptly ends in the middle, when the pro-
gram is restarted again, the file having the greater value for
the variable “strng” will have the latest sorted data. The algo-
rithm will start with the latest updated data and do the same
procedure until successfully ends with the result.

Algorithm2 : To Sort an array .
(1) open file with file pointer [fp1].
(2) read first record and put it into [strng]
(3) convert [strng] to integer and store it into [filestat1]
(4) if [filestat1 > 0]
 then
 begin
 (4.1) open file with file pointer [fp2]
 (4.2) read first record and put it into [strng]
 (4.3) convert [strng] to integer and store it into [filestat2]
 (4.4) if [filestat1 > filestat2]
 then
 begin
 let [fp] be point to [fp1]
 let [rcdno] be value of [filestat1]
 let [prcd] as 1
 end
 else
 begin

 let [fp] be point to [fp2]
 let [rcdno] be value of [filestat2].
 let [prcd] as 2
 end
 end
 else
 begin
 let [fp] be point to [fp1]
 let [rcdno] be -1
 let [prcd] as 1
 end
(5) read the file pointed by [fp] and store the contents into
array [nm[]]
(6) let [itrno] as 0 //representing iteration number 0
(7) for(i:[rcdno+1]..[len-1])
 (7.1) increment [itrno]
 (7.2) for(j:[i+1]..len)
 (7.2.1) if (nm[i] > nm[j])
 { swap(nm[i],nm[j]) } else { }
 (7.3) If [itrno > [tnoi]]
 //tnoi - tolerable_no_of_iterations
 begin
 if [prcd == 1]
 {
 open file with pointer [fp2]
 strng ← [i]

 write [strng] into file [fp2]
 write array[nm[]] into file [fp2]

 assign 2 to [prcd]
 }
 else
 {
 open file with pointer [fp1]
 strng ← [i]

 write [strng] into file [fp1]
 write array [nm[]] into file [fp1]

 assign 1 to [prcd]
 }
 assign 0 to [itrno]
 end

(8) print the array [nm[]]

5 CONCLUSION

A sorting algorithm with facilities to continue sorting from the

position where it is interrupted, is proposed here. The interrup-

tion is expected to occur at any step during its execution. This

algorithm uses two intermediate files to preserve the recent sta-

tus of the sorting process. User can choose the time interval de-

pending upon how much time it takes to sort and our tolerable

time interval. One more algorithm has been proposed which

stores intermediate data, after specified number of iterations in an

interleaved manner. This concept can be applied to other existing

sorting algorithms, as well as in other important and time con-

suming algorithmic applications. This technique may find its

applications in parallel and distributed computing.

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

REFERENCES

[1] Horowitz, E.,Sahni. S, Fundamentals of Computer, Algorithms, Com-

puter Science Press, Rockville. Md.

[2] Donald E. Knuth, The art of computer programming, volume 3: (2nd

ed.) sorting and searching, 1998.

[3] V.A. Aho , J.E. Hopcroft., J.D. Ullman, The Design and Analysis of

Computer Algorithms, second ed, Reading, MA:Addison-Wesley, 1974.

[4] Martin, W. A. Sorting. ACM Computing Surveys 3, 4 (1971), 147–174.

[5]Parag Bhalchandra, Nilesh Deshmukh, Sakharam Lokhande, Santosh

Phulari, A Comprehensive Note on Complexity Issues in Sorting Algo-

rithms, Advances in Computational Research, ISSN: 0975–3273, Volume 1,

Issue 2, 2009, pp-1-09.

[6] Jehad Alnihoud and Rami Mansi, An Enhancement of Major Sorting

Algorithms , The International Arab Journal of Information Technology,

Vol. 7, No. 1, pp.55-62, January 2010

[7] Yingxu Wang, A New Sort Algorithm: Self-Indexed Sort, Communica-

tions of ACM SIGPALN, Vol.31, No.3, ACM, pp.28-36, March 1996

[8] C.A.R Hoare : Quicksort, Computer Journal vol 5(1962), 10-15

[9] Bremananth R, Radhika.V and Thenmozhi.S, Visualization of Search-

ing and Sorting Algorithms, International Journal of Computer and In-

formation Engineering 3:3 2009

[10]Jon L.Bentley, M.Douglas Mcilory, Engineering a Sort Function, Soft-

ware-Practice and Experience, Vol. 23(11), pp.1249–1265, November 1993.

[11] Robert Lafore, Data Structures and Algorithmsin Java,Second Addi-

tion,2002.

[12] Robert Sedgewick, Algorithms in Java, Third ed. Parts 1-4, Addison

Wesley, 2003

[13]Mark Allen Weiss: Datastructures & Algorithm analysis in Java, Addi-

son Wesley, Reading Mass., 1999

